DPPPRED-IV: An Ensembled QSAR-Based Web Server for the Prediction of Dipeptidyl Peptidase 4 Inhibitors.

DPPPRED-IV:基于集成 QSAR 的二肽基肽酶 4 抑制剂预测网络服务器

阅读:3
作者:Carpio Laureano E, Olivares Marta, Ortega-Vallbona Rita, Serrano-Candelas Eva, Sanz Yolanda, Gozalbes Rafael
Type 2 diabetes mellitus (T2DM) is a complex and prevalent metabolic disorder, and dipeptidyl peptidase 4 (DPP4) inhibitors have proven effective, yet the identification of novel inhibitors remains challenging due to the vastness of chemical space. In this study, we developed DPPPRED-IV, a web-based ensembled system integrating both binary classification and continuous regression Quantitative Structure Activity Relationships (QSAR) models to predict human DPP4 inhibitory activity. A curated dataset of 4 676 ChEMBL compounds was subjected to genetic algorithm descriptor selection and multiple machine learning algorithms; classification models were combined via a soft voting ensemble, while regression models estimated IC(50) values. All models underwent external 10-fold cross-validation and applicability domain analysis. The final models were integrated into a user-friendly web server, allowing predictions from SMILES inputs. Experimental testing of 29 MolPort compounds at 1.5 µM confirmed that 14 predicted actives exhibited significant inhibition, supporting the tool's performance in early-stage screening. DPPPRED IV is freely available within the ChemoPredictionSuite and offers a resource to accelerate decision making, reduce costs and minimize animal use in T2DM drug discovery.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。