Ionizable lipids are a key component of lipid nanoparticles, the leading nonviral messenger RNA delivery technology. Here, to advance the identification of ionizable lipids beyond current methods, which rely on experimental screening and/or rational design, we introduce lipid optimization using neural networks, a deep-learning strategy for ionizable lipid design. We created a dataset of >9,000 lipid nanoparticle activity measurements and used it to train a directed message-passing neural network for prediction of nucleic acid delivery with diverse lipid structures. Lipid optimization using neural networks predicted RNA delivery in vitro and in vivo and extrapolated to structures divergent from the training set. We evaluated 1.6 million lipids in silico and identified two structures, FO-32 and FO-35, with local mRNA delivery to the mouse muscle and nasal mucosa. FO-32 matched the state of the art for nebulized mRNA delivery to the mouse lung, and both FO-32 and FO-35 efficiently delivered mRNA to ferret lungs. Overall, this work shows the utility of deep learning for improving nanoparticle delivery.
Artificial intelligence-guided design of lipid nanoparticles for pulmonary gene therapy.
人工智能指导的脂质纳米颗粒设计用于肺部基因治疗
阅读:6
作者:Witten Jacob, Raji Idris, Manan Rajith S, Beyer Emily, Bartlett Sandra, Tang Yinghua, Ebadi Mehrnoosh, Lei Junying, Nguyen Dien, Oladimeji Favour, Jiang Allen Yujie, MacDonald Elise, Hu Yizong, Mughal Haseeb, Self Ava, Collins Evan, Yan Ziying, Engelhardt John F, Langer Robert, Anderson Daniel G
| 期刊: | Nature Biotechnology | 影响因子: | 41.700 |
| 时间: | 2024 | 起止号: | 2024 Dec 10 |
| doi: | 10.1038/s41587-024-02490-y | 研究方向: | 人工智能 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
