Whey protein concentrate (WPC) is consumed for its high protein content. The structure and biological functionality of whey proteins in WPC powders may be affected by the drying technique applied. However, the specific impact of spray drying and freeze drying on the overall protein profile of whey protein derived from sweet whey streams at scale is unknown. Herein, we examine the effects of commercial-scale freeze drying and spray drying on WPC to determine which method better preserves bioactive whey proteins, with the goal of helping the dairy industry create high-value products that meet the growing consumer demand for functional dairy products. WPCs were produced from pasteurized liquid whey using either a commercial spray dryer or freeze dryer. A variety of analytical techniques, including enzyme-linked immunosorbent assay, polyacrylamide gel electrophoresis, and bottom-up proteomics using liquid chromatography-tandem mass spectroscopy were used to identify, quantify, and compare the retention of bioactive proteins in WPC before and after spray drying and freeze drying. In addition, the extent of denaturation was studied via solubility testing, differential scanning calorimetry, and hydrophobicity assessment. There was little to no difference in the retention or denaturation of key bioactive proteins between spray-dried and freeze-dried WPC powders. There was a higher percentage of select Maillard modifications in freeze-dried and spray-dried powders than in the control. The lack of significant differences between spray drying and freeze drying identified herein indicates that freeze drying does not meaningfully improve retention of bioactive proteins compared with spray drying when performed after multiple pasteurization steps. PRACTICAL APPLICATION: This study aimed to provide insight into the impacts of spray drying versus freeze drying on whey proteins. Overall, our results indicate that for commercial dairy processing that involves multiple rounds of pasteurization, freeze drying does not meaningfully improve the retention of bioactive proteins compared with spray drying. These findings may help the food and dairy industry make informed decisions regarding the processing of its whey protein products to optimize nutritional value.
Effects of spray drying and freeze drying on the protein profile of whey protein concentrate.
喷雾干燥和冷冻干燥对乳清蛋白浓缩物蛋白质组成的影响
阅读:10
作者:Haas Joanna, Kim Bum Jin, Atamer Zeynep, Wu Chao, Dallas David C
| 期刊: | Journal of Food Science | 影响因子: | 3.400 |
| 时间: | 2024 | 起止号: | 2024 Nov;89(11):7477-7493 |
| doi: | 10.1111/1750-3841.17349 | 研究方向: | 免疫/内分泌 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
