Charcot-Marie-Tooth disease type 1E (CMT1E) is an inherited autosomal dominant peripheral neuropathy caused by mutations in the peripheral myelin protein 22 (PMP22) gene. The identical leucine-to-proline (L16P) amino acid substitution in PMP22 is carried by the Trembler J (TrJ) mouse and is found in CMT1E patients presenting with early-onset disease. Peripheral nerves of patients diagnosed with CMT1E display a complex and varied histopathology, including Schwann cell hyperproliferation, abnormally thin myelin, axonal degeneration, and subaxonal morphological changes. Here, we have taken an unbiased data-independent analysis (DIA) mass spectrometry (MS) approach to quantify proteins from nerves of 3-week-old, age and genetic strain-matched wild-type (Wt) and heterozygous TrJ mice. Nerve proteins were dissolved in lysis buffer and digested into peptide fragments, and protein groups were quantified by liquid chromatography-mass spectrometry (LC-MS). A linear model determined statistically significant differences between the study groups, and proteins with an adjusted p-value of less than 0.05 were deemed significant. This untargeted proteomics approach identified 3759 quality-controlled protein groups, of which 884 demonstrated differential expression between the two genotypes. Gene ontology (GO) terms related to myelin and myelin maintenance confirm published data while revealing a previously undetected prominent decrease in peripheral myelin protein 2. The dataset corroborates the described pathophysiology of TrJ nerves, including elevated activity in the proteasome-lysosomal pathways, alterations in protein trafficking, and an increase in three macrophage-associated proteins. Previously unrecognized perturbations in RNA processing pathways and GO terms were also discovered. Proteomic abnormalities that overlap with other human neurological disorders besides CMT include Lafora Disease and Amyotrophic Lateral Sclerosis. Overall, this study confirms and extends current knowledge on the cellular pathophysiology in TrJ neuropathic nerves and provides novel insights for future examinations. Recognition of shared pathomechanisms across discrete neurological disorders offers opportunities for innovative disease-modifying therapeutics that could be effective for distinct neuropathies.
Quantitative proteomics unveils known and previously unrecognized alterations in neuropathic nerves.
定量蛋白质组学揭示了神经病变神经中已知的和以前未被发现的改变
阅读:4
作者:Defilippi Victoria, Petereit Juli, Handlos Valerie J L, Notterpek Lucia
| 期刊: | Journal of Neurochemistry | 影响因子: | 4.000 |
| 时间: | 2024 | 起止号: | 2024 Sep;168(9):3154-3170 |
| doi: | 10.1111/jnc.16189 | 研究方向: | 神经科学 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
