This study aimed to investigate the association between prenatal stress (PS) and corticosterone levels, and its influence on DNA methylation of genes related to the placental glucocorticoid (GC) barrier, including 11β-HSD2, ABCB1 (P-gp), NR3C1, and FKBP5. The PS model was established through chronic unpredictable mild stress (CUMS). DNA methylation of GC-related genes was analyzed by reduced representation bisulfite sequencing (RRBS), and the results were confirmed using MethylTarget⢠sequencing. The mRNA and protein expression levels of these genes were detected through qRT-PCR and Western blotting, respectively. Plasma corticosterone levels were elevated in pregnant female rats exposed to PS conditions and their offspring. Compared to the offspring of the prenatal control (OPC) group, the offspring of the prenatal stress (OPS) group exhibited down-regulation in both mRNA and protein expression of DNA methyltransferases (DNMT 3A and DNMT 3B), while up-regulation was observed in the expression of DNMT1. RRBS analyses identified ABCB1 and FKBP5 as hypermethylated genes, including a total of 43 differentially methylated sites (DMS) and 2 differentially methylated regions (DMR). MethylTarget⢠sequencing further confirmed 15 differentially methylated CpG sites in these genes. This study provides preliminary evidence that PS disrupts the placental GC barrier through abnormal gene expression caused by hypermethylation of GC-related genes, resulting in elevated corticosterone levels in offspring and affecting their growth and development.
Prenatal stress increases corticosterone levels in offspring by impairing placental glucocorticoid barrier function.
产前应激会损害胎盘糖皮质激素屏障功能,从而增加后代体内的皮质酮水平
阅读:5
作者:Liu Can, Liu Hongya, Li Hongyu, Yang Deguang, Li Ye, Wang Rui, Zhu Jiashu, Ma Shuqin, Guan Suzhen
| 期刊: | PLoS One | 影响因子: | 2.600 |
| 时间: | 2025 | 起止号: | 2025 Jul 18; 20(7):e0313705 |
| doi: | 10.1371/journal.pone.0313705 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
