Flap ischemia-reperfusion (I/R) injury triggers intense inflammatory responses and oxidative stress following blood flow restoration, often resulting in tissue dysfunction. Currently, no effective and widely recognized treatment strategies are available in clinical practice. During flap I/R injury, macrophages, T cells, and neutrophils form a complex regulatory network that jointly participates in inflammatory responses, immune modulation, and tissue repair. Achieving a dynamic balance among these three cell types is critical for flap survival and healing. In this study, a novel Cu-DHM NP metal-polyphenol nanozyme that effectively amplifies immune modulation in a cascade manner, inhibits apoptosis, and treats flap I/R injury was developed. Leveraging their excellent antioxidant properties and SOD-like and CAT-like enzyme activities, Cu-DHM NPs eliminate ROS, alleviate intracellular oxidative stress, protect mitochondrial function, and reduce apoptosis. Moreover, Cu-DHM NPs can regulate the immune microenvironment, cascade and amplify the immunomodulatory effect between macrophages and Naive CD4(+) T cells, increase the proportions of M2 macrophages and Treg cells, and alleviate inflammation. In animal experiments, Cu-DHM NPs downregulated several pathways associated with inflammation and cell death. Cu-DHM NPs inhibited apoptosis, reduced neutrophil infiltration, alleviated inflammation, enhanced angiogenesis, and ultimately improved flap survival rates. This novel metal-polyphenol nanozyme offers a new strategy for treating flap I/R injury by increasing immune modulation and inhibiting apoptosis.
Cu-DHM nanozymes treat flap ischemia-reperfusion injury by amplifying immune modulation in a cascade manner and inhibiting cell apoptosis.
Cu-DHM纳米酶通过级联方式增强免疫调节并抑制细胞凋亡来治疗皮瓣缺血再灌注损伤
阅读:6
作者:Zhao Xinyu, Zhang Shuo, Wang Min, Li Qingrong, Wei Xiaolong, Chen Xu-Lin, Wang Xianwen
| 期刊: | Bioactive Materials | 影响因子: | 20.300 |
| 时间: | 2025 | 起止号: | 2025 Jun 24; 51:720-739 |
| doi: | 10.1016/j.bioactmat.2025.06.036 | 研究方向: | 细胞生物学 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
