Age-related dysregulation of proteasome-independent K63 polyubiquitination in the hippocampus and amygdala.

海马和杏仁核中与年龄相关的蛋白酶体非依赖性 K63 多聚泛素化的失调

阅读:11
作者:Bae Yeeun, Venkat Harshini, Preveza Natalie, Ray W Keith, Helm Richard F, Jarome Timothy J
Cognitive decline with aging is a complex process involving multiple brain regions and molecular mechanisms. While the role of the canonical protein degradation function of the ubiquitin-proteasome system (UPS) has been well studied in the context of aging and age-associated memory loss, the non-proteolytic functions of ubiquitin activity remain poorly understood. Here, we investigated the role of lysine-63 (K63) polyubiquitination, the most abundant form of proteasome-independent ubiquitination, in aged rats, focusing on the hippocampus and amygdala, two brain regions reported to have cellular and molecular alterations with age that are associated with age-related memory loss. Using an unbiased proteomic approach, we observed a significant increase of K63 polyubiquitination in the hippocampus across the lifespan. Reducing K63 polyubiquitination in the hippocampus of aged male rats using the CRISPR-dCas13 RNA editing system enhanced contextual fear memory, while similar manipulations in middle-aged rats, which typically have normal memory, had no effect, emphasizing the age-dependent role of K63 polyubiquitination in memory formation. Conversely, the amygdala showed a consistent reduction of K63 polyubiquitination protein targets across the lifespan, and further reductions of K63 polyubiquitination improved memory retention in aged, but not middle-aged, male rats. Together, our findings reveal the dynamic and region-specific functions of K63 polyubiquitination in the brain aging process, providing novel insights into its contribution to age-associated memory decline.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。