Burkholderia cepacia complex (Bcc) is a group of Gram-negative opportunistic pathogens highly responsible for chronic pulmonary infection in cystic fibrosis (CF). Current therapies involving double or triple antibiotic combinations can rarely eradicate the pathogen in chronically infected patients owing to its intrinsic resistance to a variety of antibiotics. Herein, we show that a bismuth drug (and related compounds) could inhibit the growth of clinically antibiotic-resistant Bcc strains, with MIC (ca. 25 μg mL(-1)) comparable to that for Helicobacter pylori, and the combination of a bismuth drug and antibiotics also demonstrated excellent activity against biofilm and persisters of Bcc. Importantly, the in vitro antimicrobial activity of a bismuth drug could be well translated into in vivo evidenced by about 50% survival rates in the Galleria mellonella infection model. Transcriptomics analysis shows the dynamic responses of Bcc to bismuth treatment. Using a homemade metalloproteomic approach, we could identify 26 Bi(III)-binding proteins (15 cytosolic proteins and 11 membrane proteins). Further mechanistic studies reveal that bismuth drugs initially target the TCA cycle through the binding and inactivation of a series of enzymes including malate dehydrogenase (MDH), malate synthase (AceB), and succinyl coenzyme A synthetase (SCS), then interfere oxidative phosphorylation through binding to terminal oxidases, i.e., CyoC and CydA, to disrupt electron transport chain, eventually, disrupt protein translation and ribosome via binding and down-regulation of key proteins. Our studies highlight the great potential of bismuth drugs and/or compounds to treat multidrug-resistant Bcc infections.
Bismuth drug eradicates multi-drug resistant Burkholderia cepacia complex via aerobic respiration.
铋剂通过有氧呼吸根除多重耐药的洋葱伯克霍尔德菌复合体
阅读:4
作者:Li Jingru, Wang Haibo, Gao Peng, Wang Runming, Chan Chun-Lung, Yi-Tsun Kao Richard, Li Hongyan, Sun Hongzhe
| 期刊: | Chemical Science | 影响因子: | 7.400 |
| 时间: | 2025 | 起止号: | 2025 May 9; 16(27):12372-12384 |
| doi: | 10.1039/d5sc02049b | 研究方向: | 微生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
