Tanshinone IIA suppresses fibro-adipogenic progenitor differentiation and attenuates fat infiltration in rotator cuff injury via Wnt/β-catenin pathway

丹参酮IIA通过Wnt/β-catenin通路抑制纤维脂肪祖细胞分化,并减轻肩袖损伤中的脂肪浸润。

阅读:1
作者:Yumei Zhang ,Xinghua Li ,Rui Zhang ,Minhui Wang ,Tihui Wang ,Guanfeng Liu ,Amila Kuati ,Wenhua Mao
BACKGROUND: Fibro-adipogenic progenitors (FAPs) contribute to excessive muscular fatty infiltration after rotator cuff tears (RCT), impairing shoulder function. Tanshinone IIA (Tan IIA), a major active compound from Salvia miltiorrhiza Bunge, has known anti-adipogenic effects, yet its impact on FAP adipogenesis remains unclear. METHODS: Human FAPs from rotator cuff muscles were isolated via FACS, cultured, and treated with Tan IIA. Adipogenic differentiation was assessed with Oil Red O staining and RT-qPCR for lipid accumulation and gene expression. Single-cell RNA sequencing identified affected FAP subpopulations, while pathway analysis and Western blots confirmed Wnt/β-catenin pathway activation. β-catenin inhibitors KYA1797K and XAV-939 were then applied to evaluate pathway specificity. In vivo, RCT models received Tan IIA treatment, with Plin1 staining and triglyceride quantification measuring fatty infiltration, and gait and treadmill tests assessing shoulder function. RESULTS: Tan IIA reduced adipogenic differentiation of FAPs in vitro, as shown by Oil Red O staining and RT-qPCR. Single-cell RNA sequencing indicated that Tan IIA reduced adipogenic potential in specific FAP populations. Enrichment analysis and Western blot results confirmed Wnt/β-catenin pathway activation by Tan IIA. Anti-adipogenic effects were reversed with β-catenin inhibitors. In vivo, Tan IIA significantly reduced muscular fatty infiltration and improved shoulder function in RCT models. CONCLUSION: Tan IIA inhibits FAP adipogenesis through Wnt/β-catenin signaling activation, reducing fatty infiltration and enhancing shoulder function in RCT, suggesting Tan IIA as a potential treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。