Fanconi anemia (FA) is a genetic disorder characterized by bone marrow failure and cancer predisposition. The FA cellular phenotype is marked by a defective DNA double-strand break repair. Alongside this defect, FA cells exhibit mitochondrial dysfunction and redox unbalance. In addition, FA cells display an altered microRNA profile, including miR-29a-3p, which plays a crucial role in hematopoiesis by supporting the self-renewal, lineage commitment, and differentiation of hematopoietic stem cells (HSCs). In this study, we demonstrate that miR-29a-3p is downregulated in lymphoblasts and fibroblasts mutated for the FANC-A gene, leading to hyperactivation of PI3K/AKT pathway due to the overexpression of its target genes, FOXO3, SGK1, and IGF1, and resulting in altered mitochondrial metabolism and insufficient antioxidant response. In addition, miR-29a-3p downregulation appears associated with hyperactivation of the TGF-β signal. By contrast, FA cells transfected with miR-29a-3p show an improvement in mitochondrial metabolism, oxidative stress response, and DNA damage accumulation, by inhibiting the PI3K/AKT pathway and modulating the TGF-β pathway through a feedback mechanism. In conclusion, our results highlight the central role of miR-29a-3p in FA cells, suggesting that it is a promising molecular target to address several mechanisms based on FA pathogenesis.
miR-29a-3p and TGF-β Axis in Fanconi anemia: mechanisms driving metabolic dysfunction and genome stability.
miR-29a-3p 和 TGF-β 轴在范可尼贫血中的作用:驱动代谢功能障碍和基因组稳定性的机制
阅读:5
作者:Bertola Nadia, Regis Stefano, Cossu Vanessa, Balbi Matilde, Serra Martina, Corsolini Fabio, Bottino Cristina, Degan Paolo, Dufour Carlo, Pierri Filomena, Cappelli Enrico, Ravera Silvia
| 期刊: | Cellular and Molecular Life Sciences | 影响因子: | 6.200 |
| 时间: | 2025 | 起止号: | 2025 Jun 25; 82(1):255 |
| doi: | 10.1007/s00018-025-05775-w | 研究方向: | 代谢 |
| 信号通路: | TGF-β | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
