Efficacy and Safety of Visible and Near-Infrared Photobiomodulation Therapy on Astenospermic Human Sperm: Wavelength-Dependent Regulation of Nitric Oxide Levels and Mitochondrial Energetics.

可见光和近红外光生物调节疗法对无精症人类精子的疗效和安全性:一氧化氮水平和线粒体能量的波长依赖性调节

阅读:5
作者:Balbi Matilde, Lai Rachele, Stigliani Sara, Massarotti Claudia, Bozzo Matteo, Scaruffi Paola, Ravera Silvia, Amaroli Andrea
Male infertility is a growing global concern, with asthenozoospermia being an important contributing factor. Mitochondrial dysfunction and changes in the metabolism of nitric oxide (NO) are key determinants of reduced sperm motility. This study investigates the effects of photobiomodulation (PBM) with visible and near-infrared (NIR) laser light on sperm of asthenozoospermic patients, focusing on mitochondrial energetic status, oxidative stress, and NO dynamics. Semen samples were irradiated at 450 nm, 635 nm, 810 nm, 940 nm, and 1064 nm at different power levels (0.25, 0.50, 1.00, and 2.00 W) for 60 s on a spot area of 1 cm(2). ATP and AMP levels, oxidative stress markers, and NO concentrations were assessed at 10 and 60 min after irradiation, with the ATP/AMP ratio calculated as an index of cellular energy balance. The results show that the PBM modulates the energetic status of spermatozoa in a way dependent on wavelength and dose. Irradiation at 810 nm produced the most marked improvement in energetic status, whereas 635 nm exposure led to a significant decrease in cellular energy levels. NO levels showed a biphasic response, correlated with the visible range and with energy metabolism at 810 nm. Irradiation with 635 nm induced higher NO production with respect to the other wavelengths. Our findings suggest that PBM mainly involves mitochondrial photoreceptors and potentially the heme and flavin groups of nitric oxide synthases, facilitating electron transitions, enhancing the effectiveness of oxidative phosphorylation, and optimizing enzymatic activity. At longer wavelengths (940 nm and 1064 nm), interactions with water and lipids may introduce additional variables that affect membrane fluidity and mitochondrial function differently from shorter wavelengths.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。