Osteosarcoma (OS) is a lethal malignant orthotopic bone tumor that primarily affects children and adolescents. Biomimetic nanocarriers have attracted wide attention as a new strategy for delivering chemotherapy agents to the OS. However, challenges such as rapid clearance and limited targeting hinder the effectiveness of OS chemotherapy. In this study, we designed reactive oxygen species (ROS)-responsive nanoparticles (NPs) coated with an interleukin (IL)11-engineered macrophage membrane (MM). The camouflage by MMs prevents clearance of IL-11-engineered MM-coated NPs loaded with doxorubicin (IL-11/MM@NPs/Dox) by the immune system. Moreover, the macrophage membrane combined with surface-expressed IL-11 not only directed IL-11/MM@NPs/Dox to OS tissues but also selectively identified IL-11 receptor alpha (IL-11Rα)-enriched OS cells. Within these cells, elevated levels of ROS triggered the controlled release of Dox from the ROS-responsive NPs. The synergistic modification of targeted ligand conjugation and cell membrane coating on the ROS-responsive NPs enhanced drug availability and reduced toxic side effects, thereby boosting the efficacy of OS chemotherapy. In summary, our findings suggest that IL-11/MM@NPs/Dox represents a promising approach to improving OS chemotherapy efficacy while ensuring excellent biocompatibility.
IL-11-Engineered Macrophage Membrane-Coated Reactive Oxygen Species-Responsive Nanoparticles for Targeted Delivery of Doxorubicin to Osteosarcoma.
IL-11 工程化巨噬细胞膜包被活性氧响应纳米颗粒用于将阿霉素靶向递送至骨肉瘤
阅读:12
作者:Jiang Hao, Luo Ying, Li Bo, Wu Chunbiao, Wang Da, Xin Yingye, Xu Wei, Xiao Jianru
| 期刊: | ACS Applied Materials & Interfaces | 影响因子: | 8.200 |
| 时间: | 2024 | 起止号: | 2024 Oct 16; 16(41):55981-55995 |
| doi: | 10.1021/acsami.4c11516 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
