Aneuploidy generates enhanced nucleotide dependency and sensitivity to metabolic perturbation.

非整倍体导致核苷酸依赖性增强,并对代谢扰动更加敏感

阅读:23
作者:Magesh Rayna Y, Kaur Arshia N, Keller Faith N, Frederick Abdulrazak, Tseyang Tenzin, Haley John A, Rivera-Nieves Alejandra M, Liang Anthony C, Guertin David A, Spinelli Jessica B, Elledge Stephen J, Watson Emma V
Despite the general detriment of aneuploidy to cellular fitness, >90% of solid tumors carry an imbalanced karyotype. This existing paradox and the molecular responses to aneuploidy remain poorly understood. Here, we explore these cellular stresses and unique vulnerabilities of aneuploidy in human mammary epithelial cells (HMECs) enriched for breast cancer-associated copy number alterations (CNAs). To uncover the genetic dependencies specific to aneuploid cells, we conducted a comprehensive, genome-wide CRISPR knockout screen in isogenic aneuploid and diploid HMEC lines. Our study reveals that aneuploid HMECs exhibit an increased reliance on pyrimidine biosynthesis and mitochondrial oxidative phosphorylation genes and demonstrate heightened fitness advantages upon loss of tumor suppressor genes. Using an integrative multiomic analysis, we confirmed nucleotide pool insufficiency as a key contributor to widespread cellular dysfunction in aneuploid HMECs with net copy number gain. Although diploid cells can switch seamlessly between pyrimidine synthesis and salvage, cells with increased chromosomal content exhibit p53 activation and S-phase arrest when relying on salvage alone, alongside increased sensitivity to DNA-damaging chemotherapeutics. This work advances our understanding of the consequences of aneuploidy and uncovers potential avenues for patient stratification and therapeutic intervention based on tumor ploidy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。