RNAi mediated silencing of STAT3/PD-L1 in tumor-associated immune cells induces robust anti-tumor effects in immunotherapy resistant tumors.

RNAi介导的肿瘤相关免疫细胞中STAT3/PD-L1的沉默可对免疫疗法耐药肿瘤产生强大的抗肿瘤作用

阅读:12
作者:Ganesh Shanthi, Kim Min Ju, Lee Jenny, Feng Xudong, Ule Krisjanis, Mahan Amy, Krishnan Harini Sivagurunatha, Wang Zhe, Anzahaee Maryam Yahyaee, Singhal Garima, Korboukh Ilia, Lockridge Jennifer A, Sanftner Laura, Rijnbrand Rene, Abrams Marc, Brown Bob D
Malignant tumors are often associated with an immunosuppressive tumor microenvironment (TME), rendering most of them resistant to standard-of-care immune checkpoint inhibitors (CPIs). Signal transducer and activator of transcription 3 (STAT3), a ubiquitously expressed transcription factor, has well-defined immunosuppressive functions in several leukocyte populations within the TME. Since the STAT3 protein has been challenging to target using conventional pharmaceutical modalities, we investigated the feasibility of applying systemically delivered RNA interference (RNAi) agents to silence its mRNA directly in tumor-associated immune cells. In preclinical rodent tumor models, chemically stabilized acylated small interfering RNAs (siRNAs) selectively silenced Stat3 mRNA in multiple relevant cell types, reduced STAT3 protein levels, and increased cytotoxic T cell infiltration. In a murine model of CPI-resistant pancreatic cancer, RNAi-mediated Stat3 silencing resulted in tumor growth inhibition, which was further enhanced in combination with CPIs. To further exemplify the utility of RNAi for cancer immunotherapy, this technology was used to silence Cd274, the gene encoding the immune checkpoint protein programmed death-ligand 1 (PD-L1). Interestingly, silencing of Cd274 was effective in tumor models that are resistant to PD-L1 antibody therapy. These data represent the first demonstration of systemic delivery of RNAi agents to the TME and suggest applying this technology for immuno-oncology applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。