The neural circuit mechanism for auditory responses in the mediodorsal thalamic nucleus of awake mice.

清醒小鼠丘脑背内侧核听觉反应的神经回路机制

阅读:4
作者:Wang Shuai, Li Zijie, Qiao Bingqing, Kuai Shihui, Fan Shiyue, Zhao Ping, Qin Ling
The mediodorsal thalamic nucleus (MD) forms neural circuits with various brain regions, including the prefrontal cortex (PFC), the reticular thalamic nucleus (TRN), and the midbrain reticular nucleus (MRN). However, the specific roles and underlying mechanisms in auditory information processing remain unclear. Here, we perform multi-channel electrophysiological recordings in awake mice to investigate the response patterns of the MD to auditory stimuli, as well as the regulatory effects of PFC, MRN, and TRN inputs. We identify two distinct types of sound-evoked responses. The Phasic-response features a transient burst firing to the stimulus with short latency, rapidly adapting to baseline and corresponding to the onset fluctuation of the local field potential. The Sustained-response is marked by prolonged firing with longer latency and is accompanied by persistent enhancement of oscillatory power following stimulus offset. The response patterns of MD neurons remain consistent across different types of auditory stimuli. Optogenetic inactivation of the MRN suppresses both response types in the MD. The Sustained-response is attenuated by PFC inactivation but enhanced by TRN inactivation, while the Phasic-response remains unaffected by inactivation of either the PFC or TRN. Our findings expand the understanding of the MD's role in sound information integration and auditory cognitive regulation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。