DDIT4 participates in high glucose-induced fibroblast-like synoviocytes overactivation and cartilage injury by regulating glycolysis.

DDIT4 通过调节糖酵解参与高葡萄糖诱导的成纤维细胞样滑膜细胞过度激活和软骨损伤

阅读:8
作者:Qiang Shuo, Cheng Cheng, Dong Yonghui, Tang Chao, Zheng Jia, Liu Yunke
OBJECTIVE: More and more evidence show that diabetes is closely related to osteoarthritis (OA). However, the role and mechanism of DNA damage-inducible transcript 4 protein (DDIT4) in diabetic OA (DOA) have not been clarified. METHODS: We collected OA patients and non-OA subjects who underwent total knee replacement surgery, and analyzed the DDIT4 expression in synovial samples using RT-qPCR. The cell viability of fibroblast-like synoviocytes (FLSs) was measured by CCK-8 assay. Annexin V-FITC/PI double staining was used to detect the cell apoptosis. Scratch and Transwell assays were used to determine cell migration and invasion, respectively. RESULTS: The levels of cellular inflammatory factors (IL-1β, IL-6 and TNF-α), oxidative stress and glycolysis related indicators were detected by using kits. Western blot was used to determine the expression of DDIT4, Aggrecan, COL3A1, MMP3, MMP13, HK2, PFKP and PKM2 in FLSs or ATDC5 cells. The results showed that the expression level of DDIT4 was significantly reduced in the synovial samples of OA patients and primary FLSs. Functional studies showed that DDIT4 overexpression inhibited the overactivation, migration, and invasion of FLSs, as well as alleviated chondrocyte injury co-cultured with FLSs. Importantly, the expression of DDIT4 was down-regulated in patients with DOA and closely related to DOA. Further research found that high glucose (HG) promoted excessive activation, migration, and invasion of FLSs, and exacerbated the followed chondrocyte injury. Overexpression of DDIT4 alleviated HG-induced abnormal function of FLSs and injury to chondrocytes. Importantly, DDIT4 inhibited lactate synthesis, glucose uptake, LDH activity, extracellular acidification rate, oxygen consumption rate, and expression levels of glycolysis related protein (HK2, PFKP, PKM2) in HG-induced FLSs. And the glycolysis inhibitors (Cyto-B and 3BrPA) alleviated the injury of ATDC5 chondrocytes co-cultured with FLSs. CONCLUSIONS: DDIT4 participates in HG-induced FLSs overactivation and inflammation response, as well as chondrocyte injury and OA progression by regulating glycolysis processes.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。