The AURKA-Selective Inhibitor Alisertib Attenuates Doxorubicin-Induced Hepatotoxicity in Mice via Modulation of IL-17A/NF-κB and STAT3 Signaling Pathways.

AURKA 选择性抑制剂 Alisertib 通过调节 IL-17A/NF-κB 和 STAT3 信号通路减轻多柔比星诱导的小鼠肝毒性

阅读:4
作者:Alqussair Faisal, Elshal Mahmoud, Makled Mirhan N, Abu-Elsaad Nashwa M
Background/Objectives: Doxorubicin (DOXO) is effective against various types of cancer; however, it is associated with hepatotoxicity that may eventually lead to liver fibrosis, limiting its clinical use. Aurora kinase A (AURKA) has emerged as a crucial regulator of essential cellular processes and a promising target to overcome tumors resistant to some anticancer drugs, including DOXO. However, the potential beneficial effect of targeting AURKA on DOXO-induced toxicities has not been explored yet. Therefore, the current study aimed to explore the potential protective effect of the AURKA-selective inhibitor alisertib on DOXO-induced hepatotoxicity in mice and address the possible underlying mechanism. Methods: Mice were treated with alisertib (10 and 20 mg/kg) daily for five consecutive days and challenged with DOXO (20 mg/kg, i.p.) once on day two. Results: Our findings revealed that alisertib significantly reduced biomarkers of liver dysfunction and oxidative stress elevated by the DOXO challenge. Interestingly, alisertib suppressed DOXO-induced IL-17A upsurge along with NF-κB and STAT3 activation. Alisertib also suppressed the upregulated expression of HIF-1α and VEGF-A as well as PERK activation associated with the DOXO challenge. Moreover, alisertib counteracted DOXO-induced TGF-β1 and α-SMA overexpression in the liver. These beneficial effects of alisertib were further reflected in the histopathological findings, which indicated the ability of alisertib to ameliorate DOXO-induced hepatic necroinflammation and fibrosis. Conclusions: Alisertib mitigates DOXO-induced hepatotoxicity in mice via targeting the IL-17A/NF-κB and IL-17A/STAT3/HIF-1α/VEGF-A signaling pathways, attenuating oxidative stress, inflammation, ER stress, and fibrosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。