Periodontal regenerative effect of enamel matrix derivative in diabetes

釉质基质衍生物对糖尿病患者牙周再生的影响

阅读:4
作者:Kohei Takeda, Koji Mizutani, Takanori Matsuura, Daisuke Kido, Risako Mikami, Masahiro Noda, Prima Buranasin, Yoshiyuki Sasaki, Yuichi Izumi

Abstract

The present study aimed to investigate the periodontal regenerative effect of enamel matrix derivative (EMD) in diabetes. Thirty-six rats were assigned to streptozotocin-induced diabetes or control (non-diabetic) groups. Three-wall intrabony defects were surgically generated in the bilateral maxilla molar, followed by application of EMD or saline. Primary wound closure and defect fill were evaluated via histomorphological analysis and micro-computed tomography. mRNA expression levels of inflammatory and angiogenic factors in the defects were quantified via real-time polymerase chain reaction. Gingival fibroblasts were isolated from control animals and cultured in high-glucose (HG) or control medium. The effects of EMD on insulin resistance and PI3K/Akt/VEGF signaling were evaluated. The achievement rate of primary closure and the parameters of defect fill were significantly higher at EMD-treated site than at EMD-untreated sites in both diabetic and non-diabetic rats, although defect fill in the diabetic groups was significantly lower in the control groups on two-way repeated-measures analysis of variance (for both, p<0.05). Newly formed bone and cementum were significantly increased at EMD-treated sites in diabetic rats than at EMD-untreated sites in control rats (for both, p<0.05). Vegf was significantly upregulated at EMD-treated sites in both diabetic and non-diabetic rats (for both, p<0.05). In vitro, insulin or EMD-induced Akt phosphorylation was significantly lower in cells cultured in HG medium (p<0.05). EMD-mediated Vegf upregulation was suppressed by the Akt inhibitor wortmannin, although the effect was significantly lower in HG medium (p<0.01). In conclusion, EMD might promote periodontal tissue regeneration via Akt/VEGF signaling, even in a diabetic condition.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。