BACKGROUND: Monocots possess a fibrous root system comprising an embryonic root, crown roots, and lateral roots. The distinct cellular origins highlight the diversity of the initiation mechanism. To date, the distinct initiation mechanisms have been poorly studied. In this study, we conduct a comprehensive transcriptome and DNA methylome assay of these root types during their initiation. RESULTS: Our findings indicate significant divergence in transcriptome regulation trajectories with apparent transcriptional activation in post-embryonic root initials (crown root and lateral root) contrasted by suppression in embryonic root generation. Additionally, CHH methylation is dynamically and differentially regulated across the initiation stages of the various root types, and is significantly associated with the short transposon element within the promoter regions of functional genes, which plays crucial roles in determining the genes' spatiotemporal transcription. Moreover, our work reveals that the activation of DNA glycosylase 702 (DNG702) and repression of Domains Rearranged Methyltransferase 2 (DRM2) play important roles in the erasure of CHH methylation and activation of functional genes during the processes, such as a novel identified key regulatory bZip65, thus directly impacting the initiation of post-embryonic roots in rice. CONCLUSIONS: Our extensive analysis delineates the landscapes of spatiotemporal transcriptomes and DNA methylomes during the initiation of the three root types in rice, shedding light on the pivotal role of CHH methylation in the spatiotemporal regulation of various key genes, ensuring the successful initiation of distinct root types in rice.
DNA methylation dynamics play crucial roles in shaping the distinct transcriptomic profiles for different root-type initiation in rice.
DNA甲基化动态在塑造水稻不同根型起始的独特转录组谱中起着至关重要的作用
阅读:4
作者:Jiang Wei, Zhou Zhou, Li Xiaoying, Zhao Yu, Zhou Shaoli
| 期刊: | Genome Biology | 影响因子: | 9.400 |
| 时间: | 2025 | 起止号: | 2025 Apr 17; 26(1):99 |
| doi: | 10.1186/s13059-025-03571-0 | 研究方向: | 表观遗传 |
| 信号通路: | DNA甲基化 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
