BnaA03.MKK5-BnaA06.MPK3/BnaC03.MPK3 Module Positively Contributes to Sclerotinia sclerotiorum Resistance in Brassica napus.

BnaA03.MKK5-BnaA06.MPK3/BnaC03.MPK3 模块对甘蓝型油菜抗菌核病有积极作用

阅读:4
作者:Zhang Ka, Zhuo Chenjian, Wang Zhixin, Liu Fei, Wen Jing, Yi Bin, Shen Jinxiong, Ma Chaozhi, Fu Tingdong, Tu Jinxing
Brassica napus (oilseed rape) is one of the most important oil crops worldwide, but its growth is seriously threatened by Sclerotinia sclerotiorum. The mechanism of oilseed rape response to this pathogen has rarely been studied. Here, it was identified that BnaA03.MKK5 whose expression was induced by S. sclerotiorum infection was involved in plant immunity. BnaA03.MKK5 overexpression lines exhibited decreased disease symptoms compared to wild-type plants, accompanied by the increased expression of camalexin-biosynthesis-related genes, including BnPAD3 and BnCYP71A13. In addition, two copies of BnMPK3 (BnA06.MPK3 and BnC03.MPK3) were induced by Sclerotinia incubation, and BnaA03.MKK5 interacted with BnaA06.MPK3/BnaC03.MPK3 in yeast. These interactions were confirmed using in vivo co-immunoprecipitation assays. In vitro phosphorylation assays showed that BnaA06.MPK3 and BnaC03.MPK3 were the direct phosphorylation substrates of BnaA03.MKK5. The transgenic oilseed rape plants including BnaA06.MPK3 and BnaC03.MPK3 overexpression lines and BnMPK3 gene editing lines mediated by CRISPR/Cas9 were generated; the results of the genetic transformation of BnaA06.MPK3/BnaC03.MPK3 indicate that BnMPK3 also has a positive role in Sclerotinia resistance. This study provides information about the potential mechanism of B. napus defense against S. Sclerotiorum mediated by a detailed BnaA03.MKK5-BnaA06.MPK3/BnaC03.MPK3 module.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。