The Effects of Marine Fungal Asterripeptides A-C on In Vitro and In Vivo Staphylococcus aureus Skin Infection.

海洋真菌星肽AC对体外和体内金黄色葡萄球菌皮肤感染的影响

阅读:6
作者:Chingizova Ekaterina A, Yurchenko Ekaterina A, Chingizov Artur R, Klimovich Anna A, Pislyagin Evgeny A, Menchinskaya Ekaterina S, Kuzmich Aleksandra S, Trinh Phan Thi Hoai, Ngoc Ngo Thi Duy, Van Tran Thi Thanh, Guzhova Irina V, Aminin Dmitry L, Yurchenko Anton N
Objectives: This study aimed to investigate the in vitro and in vivo antibacterial and cytoprotective activities of marine fungal tripeptide derivatives with cinnamic acid moiety asterripeptides A-C (1-3). Methods: The antimicrobial and antibiofilm activities of asterripeptides A-C were tested using the Staphylococcus aureus ATCC 21027 strain. Human HaCaT keratinocytes infected with S. aureus were used for the in vitro investigation of the various aspects of the influence of asterripeptides A-C by lumino- and fluorospectrometry, ELISA, flow cytometry, Western blotting, and microscopy techniques. In the in vivo experiments, mice with burns and scalped S. aureus-infected wounds were used according to ethical committee resolution. Results: Asterripeptides A-C (10 µM) inhibited S. aureus growth and biofilm formation. Asterripeptides A-C increased the viability, proliferation, and migration of S. aureus-infected HaCaT cells and reduced the release of reactive oxygen species (ROS), NO, TNF-α, and IL-18. Asterripeptides A-C protected HaCaT cells against TNF-α-induced inflammation, decreased the transcriptional level of NF-κB in JB6 Cl41 cells, and increased the protein levels of Nrf2 and glutathione synthetase in HaCaT cells. More active asterripeptide C was tested in in vivo burn wounds and S. aureus-infected incised wounds. Asterripeptide C significantly enhanced wound healing, normalized cytokine levels and profiles of peripheral blood samples, and decreased S. aureus contamination of wounds and blood in mice with infected incised wounds. Conclusions: Taken together, these results confirm the dual antibacterial and Nrf2-dependent anti-inflammatory activities of asterripeptides A-C in in vitro and in vivo assays.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。