Circular Nucleic Acids Act as an Oncogenic MicroRNA Sponge to Inhibit Hepatocellular Carcinoma Progression.

环状核酸作为致癌微RNA海绵,抑制肝细胞癌的进展

阅读:5
作者:Zhang Qianyi, Sun Pengcheng, Hu Guang, Yu Xuanyao, Zhang Wen, Feng Xuan, Yu Lan, Zhang Pengfei
Background: Aberrant expression of microRNAs in neoplastic lesions may serve as potential personalized therapeutic targets. To inhibit oncogenic microRNAs (oncomiRs) expression and restore tumor suppressor proteins, linear miRNA sponges have been developed, leading to several drugs in clinical trials. Despite their efficacy, chemically synthesized miRNA inhibitors face challenges with sustained inhibition and high production costs, hindering widespread clinical adoption. Additionally, single-stranded circular RNAs (circRNAs) act as miRNA sponges, enhancing protein expression and demonstrating stability and therapeutic potential in cancer treatment. Our approach involves the use of synthetic single-stranded circular nucleic acids, including circDNA and circRNA, to selectively target and inhibit a variety of aberrantly overexpressed oncomiRs in tumors. The objective of this strategy is to restore the expression levels of multiple tumor suppressor factors and to suppress the malignant progression of tumors. Methods: Our methodology comprises a two-step process. First, we identified tumor suppressor genes (TSGs) with abnormally low expression in hepatocellular carcinoma (HCC) tumor cells by transcriptomic analysis and targeted the upstream cancer miRNA clusters of these TSGs. Second, we designed and validated a fully complementary circDNA or circRNA construct, ligated by T4 DNA ligase or T4 RNA ligase, respectively, that specifically targets the sponge oncomiRs both in vitro and in vivo to inhibit the malignant progression of HCC. Results: CircNAs demonstrated superior, long-lasting therapeutic efficacy against HCC compared to inhibitors. Furthermore, we compared the immune effects in vivo of three different nucleic acid adsorption carriers, including commercial miRNA inhibitor, circDNA, and circRNA. We found that the miRNA inhibitor activates a more robust inflammatory response compared to circDNA and circRNA. Conclusions: These findings underscore the substantial therapeutic potential of circDNA in tumorigenesis and provide novel insights for the formulation of personalized treatment plans for malignant tumors, such as HCC.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。