Establishment of a Novel in vitro Model of Sepsis-Induced Myocardial Injury Using Septic Serum: A Comprehensive Comparative Study.

利用脓毒症血清建立脓毒症诱导心肌损伤的新型体外模型:一项综合比较研究

阅读:10
作者:Yang Hang, Feng Lin, Jiang Zhenjie, Deng Ruiming, Wu Xiaodan, Zeng Kai
BACKGROUND: Sepsis is a life-threatening systemic inflammatory syndrome, in which myocardial injury plays a key role in disease progression and poor outcomes. However, the precise mechanisms underlying sepsis-induced myocardial injury remain unclear, and the most appropriate in vitro model for its investigation remains to be established. This study aimed to systematically compare different in vitro models to determine the most appropriate model for studying the pathophysiological mechanisms of sepsis-induced myocardial injury. MATERIALS AND METHODS: AC16 cardiomyocytes were treated with lipopolysaccharide (LPS), tumor necrosis factor-α (TNF-α), or septic serum for 24 hours to induce myocardial injury. Cell viability, cytotoxicity, inflammatory response, oxidative stress, apoptosis, and myocardial injury biomarkers were assessed to evaluate model performance. The mRNA expression profiles were analyzed to identify differentially expressed genes (DEGs), followed by functional enrichment analysis. The diagnostic utility of each model was assessed using receiver operating characteristic (ROC) analysis. RESULTS: While LPS and TNF-α-treated cardiomyocytes exhibited similar injury features, both only partially captured the complexity of the sepsis-induced myocardial injury phenotype. In contrast, cardiomyocytes exposed to septic serum demonstrated more pronounced inflammatory responses, oxidative stress, apoptosis, and myocardial damage. Transcriptomic analysis revealed that the septic serum model induced 706 DEGs, significantly more than LPS (262 DEGs) or TNF-α (237 DEGs), and enriched in a broader array of biological processes and signaling pathways. ROC analysis confirmed that the septic serum model (AUC=0.671, 0.610) had higher diagnostic accuracy for septic cardiomyopathy datasets compared to the LPS (AUC= 0.548, 0.426) and TNF-α (AUC= 0.470, 0.559) models. CONCLUSION: This study introduces a novel in vitro approach using septic serum to model sepsis-induced myocardial injury, providing a physiologically relevant platform that more accurately reflects the complex pathophysiology of the disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。