The objective of this study was to investigate the mechanism through which catalpol (CAT) exerts its protective effects in the context of myocardial ischemia-reperfusion injury. Preliminary results showed that Cat significantly attenuated oxygen-glucose deprivation/reoxygenation (OGD/R) damage to H9C2 cells, inhibited intracellular reactive oxygen species levels, and downregulated the protein expression of TWEAK and Fn14 post-OGD/R. The intracellular level of miR-126 was downregulated after OGD/R, and this effect was reversed by CAT administration. To further elucidate its mechanisms, a miR-126 inhibitor was used in the H9C2 cells, and the inhibitory effect was validated using real-time fluorescence quantitative polymerase chain reaction (RT-PCR). Following CAT treatment, lactate dehydrogenase (LDH) levels within the cells were assessed. The results revealed that CAT not only decreased LDH levels but also modulated the miR-126/TWEAK-FN14 signaling axis and the expression of inflammatory-related mediators, as evidenced through RT-PCR and Western blot. Additionally, molecular docking (MD) studies suggested that CAT exhibited a strong binding affinity to both the signaling pathway and inflammatory-related components. Furthermore, molecular dynamics simulations (MDS) demonstrated that the CAT-protein complex exhibited high stability, flexibility, and low binding free energy under physiological conditions. Additionally, CAT showed favorable absorption, distribution, metabolism, excretion, and toxicity characteristics. In summary, this study, through in vitro experimentation, confirmed that CAT regulates the miR-126 and inflammatory proteins within the signaling pathway, with these results being further supported by MD and MDS analyses.
Catalpol Research on the Mechanism of Antimyocardial Reperfusion Injury by Regulating the MiR-126/TWEAK-FN14 Pathway: In Vitro and Computer Simulation Studies.
梓醇通过调节 MiR-126/TWEAK-FN14 通路发挥抗心肌再灌注损伤作用的研究:体外和计算机模拟研究
阅读:5
作者:Wang Ting, Shao Chongyu, An Huiyan, Xu Guanfeng, Wan Haitong, Yang Jiehong
| 期刊: | ACS Omega | 影响因子: | 4.300 |
| 时间: | 2025 | 起止号: | 2025 May 9; 10(19):19538-19551 |
| doi: | 10.1021/acsomega.4c11357 | 研究方向: | 心血管 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
