The Role of P62/Nrf2/Keap1 Signaling Pathway in Lead-Induced Neurological Dysfunction.

P62/Nrf2/Keap1信号通路在铅诱导的神经功能障碍中的作用

阅读:23
作者:Peng Dongjie, Wei Peiqi, Li Zhenning, Wei Ruokun, Li Huishuai, Li Shaojun
BACKGROUND: Lead (Pb) exposure is recognized for its contribution to the development of neurodegenerative diseases. However, the precise mechanisms underlying Pb-induced neurological dysfunction remain elusive. This study aimed to investigate the role of oxidative stress and the autophagy-related P62/kelch like ECH-associated protein 1 (Keap1)/Nuclear factor erythroid 2-related factor 2 (Nrf2) pathway in neuronal impairment caused by Pb. METHODS: By employing both in vivo and in vitro approaches, we explored the involvement of the P62/Nrf2/Keap1 pathway in Pb-induced neurotoxicity. RESULTS: Our findings demonstrated that Pb exposure triggers excessive production of reactive oxygen species (ROS), upregulates Keap1 protein expressions, promotes Nrf2 degradation, and inhibits expression of antioxidant proteins such as heme Oxygenase-1 (HO-1) and glutathione peroxidase (GPx), resulting in oxidative damage in neurons. Furthermore, we observed that the autophagy protein P62 disrupts the normal autophagy process by interacting with the Nrf2/Keap1 axis, leading to an accumulation of Tau, a protein associated with Alzheimer's disease (AD), ultimately resulting in neurodegeneration. However, treatment with the antioxidant N-acetylcysteine, Nrf2 activator Artemisitene, and autophagy activator Rapamycin attenuated these detrimental changes. CONCLUSION: The P62/Nrf2/Keap1 pathway mediates Pb-induced neuronal dysfunction and highlights its potential as a therapeutic target for mitigating the neurodegenerative effects associated with Pb exposure.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。