Biological insights often depend on comparing conditions such as disease and health. Yet, we lack effective computational tools for integrating single-cell genomics data across conditions or characterizing transitions from normal to deviant cell states. Here, we present Decipher, a deep generative model that characterizes derailed cell-state trajectories. Decipher jointly models and visualizes gene expression and cell state from normal and perturbed single-cell RNA-seq data, revealing shared and disrupted dynamics. We demonstrate its superior performance across diverse contexts, including in pancreatitis with oncogene mutation, acute myeloid leukemia, and gastric cancer.
Joint representation and visualization of derailed cell states with Decipher
使用 Decipher 对失控细胞状态进行联合表示和可视化
阅读:1
作者:Achille Nazaret # ,Joy Linyue Fan # ,Vincent-Philippe Lavallée # ,Cassandra Burdziak ,Andrew E Cornish ,Vaidotas Kiseliovas ,Robert L Bowman ,Ignas Masilionis ,Jaeyoung Chun ,Shira E Eisman ,James Wang ,Justin Hong ,Lingting Shi ,Ross L Levine ,Linas Mazutis ,David Blei ,Dana Pe'er ,Elham Azizi
| 期刊: | Genome Biology | 影响因子: | 10.100 |
| 时间: | 2025 | 起止号: | 2025 Jul 23;26(1):219. |
| doi: | 10.1186/s13059-025-03682-8 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
