Joint representation and visualization of derailed cell states with Decipher

使用 Decipher 对失控细胞状态进行联合表示和可视化

阅读:1
作者:Achille Nazaret # ,Joy Linyue Fan # ,Vincent-Philippe Lavallée # ,Cassandra Burdziak ,Andrew E Cornish ,Vaidotas Kiseliovas ,Robert L Bowman ,Ignas Masilionis ,Jaeyoung Chun ,Shira E Eisman ,James Wang ,Justin Hong ,Lingting Shi ,Ross L Levine ,Linas Mazutis ,David Blei ,Dana Pe'er ,Elham Azizi
Biological insights often depend on comparing conditions such as disease and health. Yet, we lack effective computational tools for integrating single-cell genomics data across conditions or characterizing transitions from normal to deviant cell states. Here, we present Decipher, a deep generative model that characterizes derailed cell-state trajectories. Decipher jointly models and visualizes gene expression and cell state from normal and perturbed single-cell RNA-seq data, revealing shared and disrupted dynamics. We demonstrate its superior performance across diverse contexts, including in pancreatitis with oncogene mutation, acute myeloid leukemia, and gastric cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。