Larval zebrafish burn wound infection model reveals conserved innate immune responses against diverse pathogenic fungi.

斑马鱼幼体烧伤伤口感染模型揭示了针对多种致病真菌的保守先天免疫反应

阅读:4
作者:Mercado Soto Nayanna M, Horn Adam, Keller Nancy P, Huttenlocher Anna, Wagner Andrew S
Secondary fungal infections represent a major complication following thermal injuries. However, the mechanisms of fungal colonization of burn tissue and how the host subsequently responds to fungi within this niche remain unclear. We have previously reported a zebrafish model of thermal injury that recapitulates many of the features of human burn wounds. Here, we characterize host-fungal interaction dynamics within the burn wound niche using two of the most common fungal pathogens isolated from burn injuries, Aspergillus fumigatus and Candida albicans. Both A. fumigatus and C. albicans colonize burned tissue in zebrafish larvae and induce a largely conserved innate immune response following colonization. Using drug-induced cell-depletion strategies and transgenic zebrafish lines with impaired innate immune function, we found that macrophages control fungal burden, whereas neutrophils primarily control invasive hyphal growth at the early stages of infection. However, we also found that loss of either immune cell can be compensated by the other at the later stages of infection and that fish with both macrophage and neutrophil deficiencies show more invasive hyphal growth that is sustained throughout the infection process, suggesting redundancy in their antifungal activities. Finally, we demonstrate that C. albicans strains with increased β(1,3)-glucan exposure are cleared faster from the burn wound, demonstrating a need for shielding this immunogenic cell wall epitope for the successful fungal colonization of burn tissue. Together, our findings support the use of zebrafish larvae as a model to study host-fungal interaction dynamics within burn wounds.IMPORTANCESecondary fungal infections within burn wound injuries are a significant problem that delays wound healing and increases the risk of patient mortality. Currently, little is known about how fungi colonize and infect burn tissue or how the host responds to pathogen presence. In this report, we expand upon an existing thermal injury model using zebrafish larvae to begin elucidating both the host immune response to fungal burn colonization and fungal mechanisms for persistence within burn tissue. We found that both Aspergillus fumigatus and Candida albicans, common fungal burn wound isolates, successfully colonize burn tissue and are effectively cleared in immunocompetent zebrafish by both macrophages and neutrophils. We also find that C. albicans mutants harboring mutations that impact their ability to evade host immune system recognition are cleared more readily from burn tissue. Collectively, our work highlights the efficacy of using zebrafish to study host-fungal interaction dynamics within burn wounds.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。