Single Extracellular Vesicle Profiling to Define Brain Specific Traumatic Brain Injury Induced Neuro-Inflammation.

通过单细胞外囊泡分析来定义脑特异性创伤性脑损伤诱发的神经炎症

阅读:6
作者:Zhang Zhen, Lobb Richard J, Lane Rebecca E, To Xuan Vinh, Niu Xueming, Antaw Fiach, Pietrogrande Giovanni, Winter Craig, Wuethrich Alain, Nasrallah Fatima, Trau Matt
Traumatic Brain Injury (TBI) triggers secondary molecular processes that contribute to mortality and morbidity. Neuroinflammation is a key factor affecting patient outcomes both acutely and chronically. Traditional diagnostic tools, such as computed tomography imaging and the Glasgow Coma Scale, are limited in detecting molecular changes, particularly related to neuroinflammation. Small extracellular vesicles (sEVs) are cell-specific vesicles that enable cell-to-cell communication and are involved in TBI pathology. In this study, brain-specific sEVs are isolated by targeting brain-associated markers, sodium/potassium-transporting ATPase subunit beta-2 (ATP1B2) and excitatory amino acid transporter 2 (EAAT2), and employed surface-enhanced Raman spectroscopy to profile inflammation-associated cytokine chemokine (C-C motif) ligand 2 (CCL2) bound to single sEV, allowing for blood-based monitoring of neuroinflammation. This approach enabled the direct assessment of neuroinflammation in both human TBI samples and a controlled cortical injury in a rat model. This study found elevated brain-specific sEVs with enhanced CCL2 in TBI samples compared to non-TBI cohorts. The results suggest that the TBI diagnostic platform can detect an increased level of brain-specific sEVs carrying neuroinflammatory signals in TBI clinical samples with high specificity and sensitivity, offering potential as a precise diagnostic tool for TBI diagnosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。