Secondhand vape exposure regulation of CFTR and immune function in cystic fibrosis.

二手电子烟暴露对囊性纤维化中 CFTR 和免疫功能的调节作用

阅读:7
作者:Wisniewski Benjamin L, Shrestha Mahesh, Bojja Dinesh, Shrestha Chandra L, Lee Chris S, Ozuna Hazel, Rayner Rachael E, Bai Shasha, Cormet-Boyaka Estelle, Reynolds Susan D, Kopp Benjamin T
Secondhand smoke exposure (SHSe) is a public health threat for people with cystic fibrosis (CF) and other lung diseases. Primary smoking reduces CF transmembrane conductance regulator (CFTR) channel function, the causative defect in CF. We reported that SHSe worsens respiratory and nutritional outcomes in CF by disrupting immune responses and metabolic signaling. Recently, electronic cigarette (e-cigs) usage by caregivers and peers has increased rapidly, causing new secondhand e-cig vape exposures. Primary vaping is associated with immunologic deficits in healthy people, but it is unknown whether e-cigs similarly impacts CF immune function or how it differs from SHSe. Human CF and non-CF blood monocyte-derived macrophages (MDMs) and bronchial epithelial cells (HBECs) were exposed to flavored and unflavored e-cigs. The effect of e-cigs on CFTR expression and function, bacterial killing, cytokine signaling, lipid mediators, and metabolism was measured during treatment with CFTR modulators. E-cigs decreased CFTR expression and function in CF and non-CF MDMs and negated CFTR functional restoration by elexacaftor/tezacaftor/ivacaftor (ETI). E-cigs also negated the restoration of anti-inflammatory PGD(2) expression in CF MDMs treated with ETI compared with controls. Flavored but not unflavored e-cigs increased proinflammatory cytokine expression in CF MDMs and e-cigs promoted glycolytic metabolism. E-cigs did not impact bacterial killing. Overall, HBECs were less impacted by e-cigs compared with MDMs. E-cigs reduced macrophage CFTR expression and hindered functional CFTR restoration by CFTR modulators, promoting a glycolytic, proinflammatory state. E-cigs are an emerging public health threat that may limit the efficacy of CFTR modulators in people with CF.NEW & NOTEWORTHY New research reveals that e-cigarettes pose a serious health risk for individuals with cystic fibrosis (CF). Exposure to electronic cigarette (e-cig) vapors decreases CF transmembrane conductance regulator (CFTR) function and undermines the effectiveness of CFTR modulators, potentially worsening inflammation and metabolic responses. This highlights an urgent need for awareness around e-cig use, especially among caregivers and peers of those with CF. E-cigarettes may further complicate the management of this chronic lung disease.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。