Inverse-Vaccines for Rheumatoid Arthritis Re-establish Metabolic and Immunological Homeostasis in Joint Tissues

类风湿性关节炎反向疫苗重建关节组织的代谢和免疫稳态

阅读:4
作者:Abhirami Thumsi ,Diego Martínez ,Srivatsan J Swaminathan ,Arezoo Esrafili ,Abhirami P Suresh ,Madhan Mohan Chandrasekhar Jaggarapu ,Kelly Lintecum ,Michelle Halim ,Shivani V Mantri ,Yasmine Sleiman ,Nicole Appel ,Haiwei Gu ,Marion Curtis ,Cristal Zuniga ,Abhinav P Acharya

Abstract

Rheumatoid arthritis (RA) causes immunological and metabolic imbalances in tissue, exacerbating inflammation in affected joints. Changes in immunological and metabolic tissue homeostasis at different stages of RA are not well understood. Herein, the changes in the immunological and metabolic profiles in different stages in collagen induced arthritis (CIA), namely, early, intermediate, and late stage is examined. Moreover, the efficacy of the inverse-vaccine, paKG(PFK15+bc2) microparticle, to restore tissue homeostasis at different stages is also investigated. Immunological analyses of inverse-vaccine-treated group revealed a significant decrease in the activation of pro-inflammatory immune cells and remarkable increase in regulatory T-cell populations in the intermediate and late stages compared to no treatment. Also, glycolysis in the spleen is normalized in the late stages of CIA in inverse-vaccine-treated mice, which is similar to no-disease tissues. Metabolomics analyses revealed that metabolites UDP-glucuronic acid and L-Glutathione oxidized are significantly altered between treatment groups, and thus might provide new druggable targets for RA treatment. Flux metabolic modeling identified amino acid and carnitine pathways as the central pathways affected in arthritic tissue with CIA progression. Overall, this study shows that the inverse-vaccines initiate early re-establishment of homeostasis, which persists through the disease span.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。