Rationale: The role of the innate immune system in idiopathic pulmonary fibrosis (IPF) remains poorly understood. However, a functional myeloid compartment is required to remove dying cells and cellular debris, as well as to mediate innate immune responses against pathogens. Aberrant macrophage activity has been described in patients with post-acute sequelae of COVID fibrosis (PASC-F), and caveolin scaffolding domain (CSD) peptides have been found to attenuate inflammation and fibrosis in mouse lung injury models. Therefore, we examined, for the first time, the effects of CSD peptide LTI-2355 on the functional and synthetic properties of human myeloid cells isolated from lung explant tissue of donor lungs as well as IPF and PASC-F lung explant tissue. Methods and Results: CD45(+) myeloid cells isolated from lung explant tissue from IPF and PASC-F patients exhibited an impaired capacity to clear autologous dead cells and cellular debris. The uptake of pathogen-coated bioparticles was impaired in myeloid cells from both fibrotic patient groups independent of the type of pathogen, highlighting an intrinsic functional cell impairment. LTI-2355 improved the phagocytic activity of both IPF and PASC-F myeloid cells, and this improvement was paired with decreased proinflammatory and pro-fibrotic synthetic activity. LTI-2355 was also shown to primarily target CD206-expressing IPF and PASC-F myeloid cells. Conclusions: Primary myeloid cells from IPF and PASC-F patients exhibit dysfunctional phagocytic and synthetic properties that are modulated by LTI-2355. LTI-2355 treatment of IPF myeloid cells resulted in significantly reduced sCD163, IFN-α2, IFN-γ, IL-2, IL-10, IL-12p40, and MMP-1 in the cell supernatant. This study highlights an additional mechanism of action of the CSD peptide in the treatment of IPF and progressive fibrotic lung disease.
Caveolin Scaffolding Domain (CSD) Peptide LTI-2355 Modulates the Phagocytic and Synthetic Activity of Lung-Derived Myeloid Cells in Idiopathic Pulmonary Fibrosis (IPF) and Post-Acute Sequelae of COVID Fibrosis (PASC-F)
Caveolin支架结构域(CSD)肽LTI-2355调节特发性肺纤维化(IPF)和COVID-19后急性期肺纤维化(PASC-F)中肺源性髓系细胞的吞噬和合成活性
阅读:2
作者:Brecht Creyns ,BreAnne MacKenzie ,Yago Amigo Pinho Jannini Sa ,Ana Lucia Coelho ,Dale Christensen ,Tanyalak Parimon ,Brian Windsor ,Cory M Hogaboam
| 期刊: | Biomedicines | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Mar 26;13(4):796. |
| doi: | 10.3390/biomedicines13040796 | 靶点: | ASC |
| 研究方向: | 细胞生物学 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
