Adalimumab (Humira) represents a major advance in rheumatoid arthritis (RA) therapy. However, with long-term administration of Adalimumab, anti-idiotypic antibody (anti-Id Ab) accelerates the Adalimumab clearance rate and reduces the therapeutic effect. To avoid the interference of anti-Id Ab, we used an autologous hinge region as a spatial-hindrance-based Ab lock and connected it to the N-terminal of the light chain and heavy chain via substrate peptides (MMP-2/9) to cover the CDR binding site of Adalimumab to generate pro-Adalimumab. The Ab lock masks the complementarity-determining regions (CDRs) of Adalimumab, thus avoiding interference from anti-Id Ab. Pro-Adalimumab demonstrated a 241.6 times weaker binding ability to TNFÉ than Adalimumab. In addition, pro-Adalimumab showed a 46.6-fold greater blocking of anti-Adalimumab Id Ab in comparison to Adalimumab prior to activation. Similar results were observed with other clinical antibodies, such as pro-Infliximab (anti-TNFÉ Ab) and pro-Nivolumab (anti-PD-1). Furthermore, pro-Adalimumab maintained consistent pharmacokinetics regardless of the presence of anti-Adalimumab Id antibodies, while Adalimumab showed a 49% clearance increase, resulting in a near complete loss of function. Additionally, pro-Adalimumab was able to avoid neutralization and efficiently reduce RA progression in the presence of anti-Adalimumab Id Ab in vivo. In summary, we developed a pro-Adalimumab that avoids interference from anti-Id Abs, thereby addressing the biggest issue limiting clinical efficacy. The findings enclosed herein may have potentially broad application in antibody therapies.
Spatial-hindrance-based pro-Adalimumab prevents anti-idiotypic antibody interference in pharmacokinetic and therapeutic efficacy.
基于空间阻碍的pro-Adalimumab可防止抗独特型抗体干扰药代动力学和治疗效果
阅读:9
作者:Huang Bo-Cheng, Chen Yu-Tung, Lu Yun-Chi, Ho Kai-Wen, Hong Shih-Ting, Liao Tzu-Yi, Wu I-Hsuan, Liu En-Shuo, Liao Jun-Min, Chen Fang-Ming, Li Chia-Ching, Chuang Chih-Hung, Chen Chiao-Yun, Cheng Tian-Lu
| 期刊: | Bioengineering & Translational Medicine | 影响因子: | 5.700 |
| 时间: | 2025 | 起止号: | 2025 Apr 1; 10(5):e70015 |
| doi: | 10.1002/btm2.70015 | 研究方向: | 免疫/内分泌 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
