Tolerance of chilling dictates the geographical distribution, establishment, and productivity of C(4) crops. Chilling reduces enzyme rate, limiting the sink for the absorbed light energy leading to the need for quick energy dissipation via non-photochemical quenching (NPQ). Here, we characterize NPQ upon chilling in three Miscanthus accessions representing diverse chilling tolerance in C(4) grasses. High chilling tolerant accessions accumulate substantial amounts of zeaxanthin during chilling nights in both field and growth chamber settings. Chilling-induced zeaxanthin accumulation in the dark enhances rate of NPQ induction by 66% in the following morning. Based on our data, the emerging ways for the unique regulation of NPQ include post-translational regulation of violaxanthin de-epoxidase (VDE), VDE cofactor accessibility, and absence of transcriptional upregulation of zeaxanthin conversion back to violaxanthin. In the future, more studies will be required to obtain further evidence for these ways contributions to the chilling-dark regulation of NPQ. Engineering dark accumulation of zeaxanthin will help improve crop chilling tolerance and promote sustainable production by allowing early spring planting to maximize the use of early-season soil moisture. Driving the engineered trait by chilling inducible promoter would ensure the minimization of a trade-off between photoprotection and photosynthesis efficiency.
Chilling- and dark-regulated photoprotection in Miscanthus, an economically important C(4) grass.
芒草(一种具有重要经济价值的 C(4) 草)的低温和黑暗调节光保护
阅读:5
作者:Haupt Jared, Glowacka Katarzyna
| 期刊: | Communications Biology | 影响因子: | 5.100 |
| 时间: | 2024 | 起止号: | 2024 Dec 19; 7(1):1660 |
| doi: | 10.1038/s42003-024-07320-0 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
