Sialic acid aptamer and RNA in situ hybridization-mediated proximity ligation assay for spatial imaging of glycoRNAs in single cells

利用唾液酸适体和RNA原位杂交介导的邻近连接分析法对单细胞中的糖RNA进行空间成像

阅读:2
作者:Weijie Guo # ,Yuan Ma # ,Quanbing Mou ,Xiangli Shao ,Mingkuan Lyu ,Valeria Garcia ,Linggen Kong ,Whitney Lewis ,Zhenglin Yang ,Shuya Lu ,Yi Lu
Glycosylated RNAs (glycoRNAs) have recently emerged as a new class of molecules of substantial interest owing to their potential roles in cellular processes and diseases. However, studying glycoRNAs is challenging owing to the lack of effective research tools including, but not limited to, imaging techniques to study the spatial distribution of glycoRNAs. Recently, we reported the development of a glycoRNA imaging technique, called sialic acid aptamer and RNA in situ hybridization-mediated proximity ligation assay (ARPLA), to visualize sialic acid-containing glycoRNAs with high sensitivity and specificity. Here we describe the experimental design principles and detailed step-by-step procedures for ARPLA-assisted glycoRNA imaging across multiple cell types. The procedure includes details for target selection, oligo design and preparation, optimized steps for RNA in situ hybridization, glycan recognition, proximity ligation, rolling circle amplification and a guideline for image acquisition and analysis. With properly designed probe sets and cells prepared, ARPLA-based glycoRNA imaging can typically be completed within 1 d by users with expertise in biochemistry and fluorescence microscopy. The ARPLA approach enables researchers to explore the spatial distribution, trafficking and functional contributions of glycoRNAs in various cellular processes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。