Indoor Large-Scale MIMO-Based RSSI Localization with Low-Complexity RFID Infrastructure.

基于低复杂度RFID基础设施的室内大规模MIMO RSSI定位

阅读:7
作者:El-Absi Mohammed, Zheng Feng, Abuelhaija Ashraf, Al-Haj Abbas Ali, Solbach Klaus, Kaiser Thomas
Indoor localization based on unsynchronized, low-complexity, passive radio frequency identification (RFID) using the received signal strength indicator (RSSI) has a wide potential for a variety of internet of things (IoTs) applications due to their energy-harvesting capabilities and low complexity. However, conventional RSSI-based algorithms present inaccurate ranging, especially in indoor environments, mainly because of the multipath randomness effect. In this work, we propose RSSI-based localization with low-complexity, passive RFID infrastructure utilizing the potential benefits of large-scale MIMO technology operated in the millimeter-wave band, which offers channel hardening, in order to alleviate the effect of small-scale fading. Particularly, by investigating an indoor environment equipped with extremely simple dielectric resonator (DR) tags, we propose an efficient localization algorithm that enables a smart object equipped with large-scale MIMO exploiting the RSSI measurements obtained from the reference DR tags in order to improve the localization accuracy. In this context, we also derive Cramer-Rao lower bound of the proposed technique. Numerical results evidence the effectiveness of the proposed algorithms considering various arbitrary network topologies, and results are compared with an existing algorithm, where the proposed algorithms not only produce higher localization accuracy but also achieve a greater robustness against inaccuracies in channel modeling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。