In spinal cord injury, axonal disruption results in motor and sensory function impairment. The evaluation of axonal fibers is essential to assess the severity of injury and efficacy of any treatment protocol, but conventional methods such as tracer injection in brain parenchyma are highly invasive and require histological evaluation, precluding clinical applications. Previous advances in magnetic resonance imaging technology have led to the development of diffusion tensor tractography (DTT) as a potential modality to perform in vivo tracing of axonal fibers. The properties and clinical applications of DTT in the brain have been reported, but technical difficulties have limited DTT studies of the spinal cord. In this study, we report the effective use of DTT to visualize both intact and surgically disrupted spinal long tracts in adult common marmosets. To verify the feasibility of spinal cord DTT, we first performed DTT of postmortem marmosets. DTT clearly illustrated spinal projections such as the corticospinal tract and afferent fibers in control animals, and depicted the severed long tracts in the injured animals. Histology of the spinal cords in both control and injured groups were consistent with DTT findings, verifying the accuracy of DTT. We also conducted DTT in live marmosets and demonstrated that DTT can be performed in live animals to reveal in vivo nerve fiber tracing images, providing an essential tool to evaluate axonal conditions in the injured spinal cord. Taken together, these findings demonstrate the feasibility of applying DTT to preclinical and clinical studies of spinal cord injury.
In vivo tracing of neural tracts in the intact and injured spinal cord of marmosets by diffusion tensor tractography.
利用扩散张量纤维束成像技术对狨猴完整和受损脊髓中的神经束进行体内追踪
阅读:11
作者:Fujiyoshi Kanehiro, Yamada Masayuki, Nakamura Masaya, Yamane Junichi, Katoh Hiroyuki, Kitamura Kazuya, Kawai Kenji, Okada Seiji, Momoshima Suketaka, Toyama Yoshiaki, Okano Hideyuki
| 期刊: | Journal of Neuroscience | 影响因子: | 4.000 |
| 时间: | 2007 | 起止号: | 2007 Oct 31; 27(44):11991-8 |
| doi: | 10.1523/JNEUROSCI.3354-07.2007 | 研究方向: | 神经科学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
