Gene Therapy Targeting Pkp2 Deficiency Attenuates Cardiac Fibrosis: Insights From Single-Cell Transcriptomics in Pkp2-Knockout Rats.

针对 Pkp2 缺陷的基因治疗可减轻心脏纤维化:来自 Pkp2 敲除大鼠单细胞转录组学的见解

阅读:23
作者:Ding Xinyue, Zhang Hui, Zhao Xuan, Yin Nengpin, Han Shuo, Jin Xiao, Li Tingting, Xing Lina, Qi Zhen, Zhu Yanan, Wang Xin, Liu Zongjun
Heart failure (HF), characterized by maladaptive cardiac fibrosis and progressive functional deterioration, remains a therapeutic challenge. In this study, we established a cardiac organoid HF model derived from human-induced pluripotent stem cells (hiPSCs) and observed a significant downregulation of the desmosomal protein plakophilin-2 (PKP2) in this model. Reduced PKP2 expression was detected in both HF rat and mouse. Subsequent in vivo studies on Pkp2-knockout (Pkp2-KO) rats demonstrated that adeno-associated virus serotype 9 (AAV9)-mediated restoration of PKP2 not only restored cardiac PKP2 expression but also attenuated the progression of fibrosis. Administration of AAV9-PKP2 could also inhibit myocardial fibrosis and slow down disease progression in HF mouse. Single-cell RNA sequencing analysis in rats revealed enriched pathological profibrotic cardiac fibroblasts (CFs) in PKP2-deficient myocardium. Mechanistically, AAV9-PKP2 administration induced the phenotypic conversion of activated CFs into quiescent antifibrotic states. Integrated bioinformatics identified that protein tyrosine phosphatase receptor type C (Ptprc) was a pivotal regulator orchestrating this cellular reprogramming. Our findings thus unveil PKP2 as a master regulator of fibroblast activation and propose AAV9-PKP2 gene therapy as a promising novel therapeutic strategy targeting pathological fibrosis in HF.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。