Conversion of Waste Cooking Oil into Bio-Fuel via Pyrolysis Using Activated Carbon as a Catalyst.

利用活性炭作为催化剂,通过热解法将废弃食用油转化为生物燃料

阅读:4
作者:Banchapattanasakda Warintorn, Asavatesanupap Channarong, Santikunaporn Malee
The utilization of activated carbon (AC) as a catalyst for a lab-scale pyrolysis process to convert waste cooking oil (WCO) into more valuable hydrocarbon fuels is described. The pyrolysis process was performed with WCO and AC in an oxygen-free batch reactor at room pressure. The effects of process temperature and activated carbon dosage (the AC to WCO ratio) on the yield and composition are discussed systematically. The direct pyrolysis experimental results showed that WCO pyrolyzed at 425 °C yielded 81.7 wt.% bio-oil. When AC was used as a catalyst, a temperature of 400 °C and 1:40 AC:WCO ratio were the optimum conditions for the maximum hydrocarbon bio-oil yield of 83.5 and diesel-like fuel of 45 wt.%, investigated by boiling point distribution. Compared to bio-diesel and diesel properties, bio-oil has a high calorific value (40.20 kJ/g) and a density of 899 kg/m(3), which are within the bio-diesel standard range, thus demonstrating its potential use as a liquid bio-fuel after certain upgradation processes. The study revealed that the optimum AC dosage promoted the thermal cracking of WCO at a reduced process temperature with a higher yield and improved quality compared to noncatalytic bio-oil.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。