Motor cortical function and the precision grip.

运动皮层功能和精细抓握能力

阅读:8
作者:Geevasinga Nimeshan, Menon Parvathi, Kiernan Matthew C, Vucic Steve
While task-dependent changes in motor cortical outputs have been previously reported, the issue of whether such changes are specific for complex hand tasks remains unresolved. The aim of the present study was to determine whether cortical inhibitory tone and cortical output were greater during precision grip and power grip. Motor cortex excitability was undertaken by using the transcranial magnetic stimulation threshold tracking technique in 15 healthy subjects. The motor-evoked potential (MEP) responses were recorded over the abductor pollicis brevis (APB), with the hand in the following positions: (1) rest, (2) precision grip and (3) power grip. The MEP amplitude (MEP amplitude REST 23.6 ± 3.3%; MEP amplitude PRECISION GRIP 35.2 ± 5.6%; MEP amplitude POWER GRIP 19.6 ± 3.4%, F = 2.4, P < 0.001) and stimulus-response gradient (SLOPEREST 0.06 ± 0.01; SLOPEPRCISION GRIP 0.15 ± 0.04; SLOPE POWER GRIP 0.07 ± 0.01, P < 0.05) were significantly increased during precision grip. Short interval intracortical inhibition (SICI) was significantly reduced during the precision grip (SICI REST 15.0 ± 2.3%; SICI PRECISION GRIP 9.7 ± 1.5%, SICI POWER GRIP 15.9 ± 2.7%, F = 2.6, P < 0.05). The present study suggests that changes in motor cortex excitability are specific for precision grip, with functional coupling of descending corticospinal pathways controlling thumb and finger movements potentially forming the basis of these cortical changes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。