Recently, multifunctional metasurface has showcased its powerful functionality to integrate nanoprinting and holography, and display ultracompact meta-images in near- and far-field simultaneously. Herein, we propose a tri-channel metasurface which can further extend the meta-imaging ranges, with three independent images located at the interface, Fresnel and Fourier domains, respectively. Specifically, a structural-color nanoprinting image is decoded right at the interface of the metasurface, enabled by varying the dimensions of nanostructures; a Fresnel holographic image and another Fourier holographic image are present at the Fresnel and Fourier (far-field) domains, respectively, enabled by geometric phase. The spectral and phase manipulation capabilities of nanostructures have been maximized, and the spatial multiplexing capabilities for diffraction in metasurfaces have also been fully exploited. By leveraging the design freedom enabled through the tuning of the geometric size and orientation of nanostructures, as well as optimizing the diffraction spatial light wave transformation, the encoding of multiple images on the single-celled metasurface is achieved. More interestingly, due to the spatial separation of images across different channels, crosstalk is virtually eliminated, effectively enhancing imaging quality. The proposed metasurface offers several advantages, including a compact design, easiness of fabrication, minimal crosstalk, and high storage density. Consequently, it holds promising applications in image display, data storage, information encryption, anti-counterfeiting, and various other fields.
Structural-color meta-nanoprinting embedding multi-domain spatial light field information.
结构色超纳米打印技术嵌入多域空间光场信息
阅读:5
作者:Liang Congling, Wang Jiahao, Huang Tian, Dai Qi, Li Zile, Yu Shaohua, Li Gongfa, Zheng Guoxing
| 期刊: | Nanophotonics | 影响因子: | 6.600 |
| 时间: | 2024 | 起止号: | 2024 Mar 6; 13(9):1665-1675 |
| doi: | 10.1515/nanoph-2024-0019 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
