mTOR Pathway Inhibition, Anticancer Activity and In Silico Calculations of Novel Hydrazone Derivatives in Two- and Three-Dimensional Cultured Type 1 Endometrial Cancer Cells.

mTOR通路抑制、抗癌活性以及新型腙衍生物在二维和三维培养的1型子宫内膜癌细胞中的计算机模拟计算

阅读:7
作者:Bulbul Muhammet Volkan, Mermer Arif, Kolbasi Bircan, Kocabas Fatih, Kalender Semiha Mervenur, Kirectepe Aydin Kiymet Asli, Demircan Turan, Keskin İlknur
BACKGROUND: Endometrial cancer remains a significant health concern, with type 1 endometrial cancer characterized by aberrant expression of estrogen-dependent and mTOR pathway proteins. In this study, we evaluated the effects of two novel hydrazone derivatives against the Ishikawa cell line, a model for endometrial cancer. METHODS: Two novel hydrazone derivatives, MVB1 and MVB2, were synthesized and characterized. The anticancer activity of the compounds in both two- and three-dimensional cultured Ishikawa cells was evaluated by MTT assay. The interaction of the compounds with proteins in the PI3K/AKT/mTOR pathway was evaluated by molecular docking studies and in vitro western blot analyses were performed. Additionally, ADME/T calculations were performed to evaluate the drug-like properties of the compounds. RESULTS: MVB1 and MVB2 showed promising anticancer activity with IC(50) values of 8.3 ± 0.5 µM and 9.0 ± 1.2 µM in 2D cultures, respectively, and 49.9 ± 2 µM and 20.6 ± 1.9 µM in 3D cultures, respectively. Molecular docking studies revealed significant interactions between these compounds and key proteins in the PI3K/AKT/mTOR pathway, with MVB1 exhibiting the highest mean binding score (-10.5 kcal/mol) among PI3K, AKT1, and mTOR proteins. In vitro studies confirmed that MVB1 effectively suppressed PI3K protein expression in both 2D and 3D cultures (p ≤ 0.0001). CONCLUSIONS: The findings suggest that MVB1 and MVB2, especially MVB1, are promising candidates for further development as potential therapeutics for endometrial cancer by targeting the PI3K/AKT/mTOR pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。