Interaction of Bacterial Phenazines with Colistimethate in Bronchial Epithelial Cells.

细菌吩嗪类化合物与粘菌素甲酯在支气管上皮细胞中的相互作用

阅读:15
作者:Mossine Valeri V, Chance Deborah L, Waters James K, Mawhinney Thomas P
Multidrug-resistant bacterial infections are being increasingly treated in clinics with polymyxins, a class of antibiotics associated with adverse effects on the kidney, nervous system, or airways of a significant proportion of human and animal patients. Although many of the resistant pathogens display enhanced virulence, the hazard of cytotoxic interactions between polymyxin antibiotics and bacterial virulence factors (VFs) has not been assessed, to date. We report here the testing of paired combinations of four Pseudomonas aeruginosa VF phenazine toxins, pyocyanin (PYO), 1-hydroxyphenazine (1-HP), phenazine-1-carboxylic acid (PCA), and phenazine-1-carboxamide (PCN), and two commonly prescribed polymyxin drugs, colistin-colistimethate sodium (CMS) and polymyxin B, in three human airway cell lines, BEAS-2B, HBE-1, and CFT-1. Cytotoxicities of individual antibiotics, individual toxins, and their combinations were evaluated by the simultaneous measurement of mitochondrial metabolic, total transcriptional/translational, and Nrf2 stress response regulator activities in treated cells. Two phenazines, PYO and 1-HP, were cytotoxic at clinically relevant concentrations (100 to 150 μM) and prompted a significant increase in oxidative stress-induced transcriptional activity in surviving cells. The polymyxin antibiotics arrested cell proliferation at clinically achievable (<1 mM) concentrations as well, with CMS displaying surprisingly high cytotoxicity (50% effective dose [ED(50)] = 180 μM) in BEAS-2B cells. The dose-response curves were probed by a median-effect analysis, which established a synergistically enhanced cytotoxicity of the PYO-CMS combination in all three airway cell lines; a particularly strong effect on BEAS-2B cells was observed, with a combination index (CI) of 0.27 at the ED(50) PCA, PCN, and 1-HP potentiated CMS cytotoxicity to a smaller extent. The cytotoxicity of CMS could be reduced with 10 mM N-acetyl-cysteine. Iron chelators, while ineffective against the polymyxins, could rescue all three bronchial epithelial cell lines treated with lethal PYO or CMS-PYO doses. These findings suggest that further evaluations of CMS safety are needed, along with a search for means to moderate potentially cytotoxic interactions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。