Randomly overlap subarray feeding network to reduce number of phase shifter in 28GHz.

随机重叠子阵列馈电网络,以减少 28GHz 中的移相器数量

阅读:7
作者:Shadi Maryam, Atlasbaf Zahra
Synthesizing antenna arrays for fifth-generation communication technology is the most significant issue in the electromagnetic industry and academia. This paper focused on a comprehensive algorithm for developing a 5G base station antenna array. The suggested algorithm aims to provide a high-gain array antenna with a continuous wide scan angle without a grating lobe, as much as a compact size, low cost, and simplicity of fabrication, especially in the array feeding network system. The best architecture is specified by comparing the array factor of numerous subarray combinations to achieve the grating lobe's minimum level. By considering additional limitations in our approach, such as different subarray symmetric architecture, complex weighting function, minimal number of overlapped elements, and an optimal number of microstrip layers, we improve the specification over previous research and lower the runtime procedure. The proposed method is also used to construct a linear array antenna with 49 radiating elements for a 5G base station antenna operating at 28 GHz. Consequently, the number of phase shifters has been reduced by more than 53%, significantly improving over earlier efforts. Then a hybrid genetic algorithm and a particle swarm optimization technique are applied to determine the optimal values of excitation coefficients to control side lobe level(SLL) and beam scanning. The amplitude and phase step variations are calculated as 0.1 and 1°, respectively. HPBW of 2.8°, gain of 28 dB, scanning up to ± 25° in one direction, and SLL below -24 dB are the electromagnetic properties of the designed aperiodic linear array. An example of implementing the suggested method, a 16-element array with a random overlap subarray structure, including the feeding network and microstrip antenna element, will be modeled using a full-wave simulator. The simulation results show that the proposed algorithm is efficient for designing array topology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。