Traditional pyramidotomy models have a high mortality rate from breathing difficulties and show early recovery from the induced motor deficits. This study establishes a novel pyramidotomy technique in Sprague Dawley rats that generates persistent motor deficits and has a reduced mortality rate. We used viral neural tracing to identify the course and relative distribution of forelimb and hindlimb motor fibers (n = 9). On basis of the neural tracing data, the medullary pyramid was targeted dorsally from the cerebellar cortex for photothrombotic infarct lesioning (n = 18). The photothrombotic technique selectively destroyed the corticospinal fibers in the medullary pyramid with relative preservation of neighboring grey-matter tissue. MicroPET imaging using 2-deoxy-2-[18F]-fluoro-D-glucose (FDG-microPET) showed a decrease in regional cerebral glucose metabolism (rCGM) in the bilateral pyramid and ipsilateral sensory cortex (p < 0.001, FDR q < 0.05). In addition, the trapezoid bodies and superior olivary nuclei showed a decrease in rCGM, compatible with damage caused during the introduction of the optical fiber. Connected structures such as the inferior colliculi and auditory cortices also showed decreases in rCGM in both hemispheres (p < 0.001, FDR q < 0.05). There was a significant and persistent decrease in motor and sensory function in the contralateral limb following pyramidotomy, as demonstrated by performance in the single pellet reaching task and the foot-fault test. There was no operative mortality or loss of respiratory function in this study. These results indicate that photothrombotic pyramidotomy with a dorsal transcortical approach is a safe and reliable technique for generating a pyramidotomy model with persistent motor deficits.
Transcortical photothrombotic pyramidotomy model with persistent motor deficits.
经皮质光血栓锥体束切断术模型伴持续性运动功能障碍
阅读:3
作者:Song Hanlim, Cho Jongwook, Lee Sunwoo, Park Ji-Young, Choi Byung-Moon, Kim Min Sun, Kim Weon Gyeong, Lee Min-Cheol, Kim Hyoung-Ihl
| 期刊: | PLoS One | 影响因子: | 2.600 |
| 时间: | 2018 | 起止号: | 2018 Dec 31; 13(12):e0204842 |
| doi: | 10.1371/journal.pone.0204842 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
