Static Magnetic Field Effect on Cell Alignment, Growth, and Differentiation in Human Cord-Derived Mesenchymal Stem Cells.

静态磁场对人脐带间充质干细胞的细胞排列、生长和分化的影响

阅读:5
作者:Sadri Maryam, Abdolmaleki Parviz, Abrun Saeid, Beiki Bahareh, Samani Fazel Sahraneshin
This investigation is performed to evaluate the impact of static magnetic field on the Cell growth alignment, and differentiation potential in Human Mesenchymal Stem cells derived from human newborn cords. In vitro-cultured mesenchymal stem cells derived from human newborn cords were exposed to SMF up to 24 mT and compared with the control (unexposed) cultures. Viability was assessed via Trypan Blue staining and MTT assay. Cell cycle progression was studied after flow cytometry data analysis. Sox-2, Nanong, and Oct-4 Primers used for RT-PCR experiment. Morphological studies showed that the exposed cells were significantly aligned in parallel bundles in a correlation with the magnetic field lines. Viability measurements showed a significant reduction in cell viability which was noted after exposure to static magnetic field and initiated 36 h after the end of exposure time. Flow cytometric data analysis confirmed a decrease in G1 phase cell population within the treated and cultured groups compared with the corresponding control samples. However, the induced changes were recovered in the cell cultures after the post-exposure culture recovery time which may be attributed to the cellular repair mechanisms. Furthermore, the proliferation rate and Oct-4 gene expression were reduced due to the 18 mT static magnetic field exposure. The significant proliferation rate decrease accompanied by the Sox-2, Nanong, and Oct-4 gene expression decline, suggested the differentiation inducing effects of SMF exposure. Exposure to Static Magnetic fields up to 24 mT affects mesenchymal stem cell alignment and proliferation rate as well as mRNA expression of Sox-2, Nanong, and Oct-4 genes, therefore can be considered as a new differentiation inducer in addition to the other stimulators.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。