Synergistic cytotoxic effects of an extremely low-frequency electromagnetic field with doxorubicin on MCF-7 cell line.

极低频电磁场与阿霉素对 MCF-7 细胞系的协同细胞毒性作用

阅读:5
作者:Ramazi Shahin, Salimian Mani, Allahverdi Abdollah, Kianamiri Shahla, Abdolmaleki Parviz
Breast cancer is one of the leading causes of cancer deaths in women worldwide. Magnetic fields have shown anti-tumor effects in vitro and in vivo as a non-invasive therapy method that can affect cellular metabolism remotely. Doxorubicin (DOX) is one of the most commonly used drugs for treating breast cancer patients. It can be assumed that combining chemotherapy and magnetotherapy is one of the most effective treatments for breast cancer. This study aimed to investigate the potential cytotoxic effect of DOX at low concentrations in combination with extremely low-frequency electromagnetic fields (ELF-EMF; 50 Hz; 20 mT). The breast cancer cell line MCF-7 was examined for oxidative stress, cell cycle, and apoptosis. MCF-7 cells were treated with various concentrations of DOX as an apoptosis-inducing agent and ELF-EMF. Cytotoxicity was examined using the MTT colorimetric assay at 12, 24, and 48 h. Consequently, concentration- and time-dependent cytotoxicity was observed in MCF-7 cells for DOX within 24 h. The MTT assay results used showed that a 2 μM concentration of DOX reduced cell viability to 50% compared with control, and as well, the combination of ELF-EMF and DOX reduced cell viability to 50% compared with control at > 0.25 μM doses for 24 h. In MCF-7 cells, combining 0.25 μM DOX with ELF-EMF resulted in increased ROS levels and DOX-induced apoptosis. Flow cytometry analysis, on the other hand, revealed enhanced arrest of MCF-7 cells in the G0-G1 phase of the cell cycle, as well as inducing apoptotic cell death in MCF-7 cells, implying that the synergistic effects of 0.25 μM DOX and ELF-EMF may represent a novel and effective agent against breast cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。