Deep learning grew in importance in recent years due to its versatility and excellent performance on supervised classification tasks. A core assumption for such supervised approaches is that the training and testing data are drawn from the same underlying data distribution. This may not always be the case, and in such cases, the performance of the model is degraded. Domain adaptation aims to overcome the domain shift between the source domain used for training and the target domain data used for testing. Unsupervised domain adaptation deals with situations where the network is trained on labeled data from the source domain and unlabeled data from the target domain with the goal of performing well on the target domain data at the time of deployment. In this study, we overview seven state-of-the-art unsupervised domain adaptation models based on deep learning and benchmark their performance on three new domain adaptation datasets created from publicly available aerial datasets. We believe this is the first study on benchmarking domain adaptation methods for aerial data. In addition to reporting classification performance for the different domain adaptation models, we present t-SNE visualizations that illustrate the benefits of the adaptation process.
Benchmarking Domain Adaptation Methods on Aerial Datasets.
基于航空数据集的领域自适应方法基准测试
阅读:5
作者:Nagananda Navya, Taufique Abu Md Niamul, Madappa Raaga, Jahan Chowdhury Sadman, Minnehan Breton, Rovito Todd, Savakis Andreas
| 期刊: | Sensors | 影响因子: | 3.500 |
| 时间: | 2021 | 起止号: | 2021 Dec 2; 21(23):8070 |
| doi: | 10.3390/s21238070 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
