A mechanical device inspired by the rapid rotational motion of the pistol shrimp plunger has been developed to experimentally study the contraction/expansion dynamics of a gas bubble inside a confined liquid volume and in the vicinity of solid surfaces. The apparatus consists of a limb with a V-shaped end, which fits into a socket forming a cylindrical compression chamber. Air bubbles of different sizes and in different positions inside the chamber were seeded to study their shape evolution in liquids when subjected to pressure pulses induced by the limb closure. By changing the standoff and curvature parameters, as well as the closing power of the limb it was possible to control the dynamical behavior of the cavity. Four stages describing the dynamic behavior of the bubble were found: 1) A slight expansion-contraction stage accompanied by very weak volumetric oscillations. 2) First compression stage. The formation of gas and liquid micro-jets is observed when the vertical symmetry axis of the bubble is initially located outside of the chamber symmetry axis, on the other hand, when there is a coincidence between these axes, the bubble only contracts exhibiting non-spherical shapes, alternating between oblate and prolate spheroidal structures. 3) An expansion stage where the cavity reaches the walls of the chamber exhibiting irregular shapes on its surface. 4) Second compression stage. This process begins when the limb rebounds and stops sealing the chamber allowing a jet of liquid to enter from the fluid medium outside, inducing a very violent collapse accompanied by the emission of light. The proposed technique represents a novel alternative to study the dynamic evolution of bubbles near and on solid boundaries of various geometries. Other attractive features of the apparatus are its low manufacturing cost, simple design and compact size which makes it easily portable.
Bio-inspired apparatus to produce luminescent cavitation in a rigid walled chamber.
仿生装置,用于在刚性壁腔室中产生发光空化现象
阅读:10
作者:Cruz Samuel, GodÃnez Francisco A, MartÃnez-Alvarado Luis Enrique, Ramos-Garcia Rubén
| 期刊: | PLoS One | 影响因子: | 2.600 |
| 时间: | 2023 | 起止号: | 2023 Dec 14; 18(12):e0293839 |
| doi: | 10.1371/journal.pone.0293839 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
