Oligomer-Aβ42 suppress glioma progression via potentiating phagocytosis of microglia.

寡聚体-Aβ42 通过增强小胶质细胞的吞噬作用来抑制胶质瘤的进展

阅读:5
作者:Lu Jie, Wang Zhenning, He Zhenqiang, Hu Yang, Duan Hao, Liu Zihao, Li Depei, Zhong Sheng, Ren Jiaoyan, Zhao Guojun, Mou Yonggao, Yao Maojin
AIMS: Glioma is characterized by an immunosuppressed environment and a poor prognosis. The accumulation of Amyloid β (Aβ) leads to an active environment during the early stages of Alzheimer's disease (AD). Aβ is also present in glioma tissues; however, the biological and translational implications of Aβ in glioma are elusive. METHODS: Immunohistochemical (IHC) staining, Kaplan-Meier (KM) survival analysis and Cox regression analysis on a cohort of 79 patients from our institution were performed to investigate the association between Aβ and the malignancy of glioma. Subsequently, the potential of oligomer-Aβ42 (OAβ42) to inhibit glioma growth was investigated in vivo and in vitro. Immunofluorescence staining and phagocytosis assays were performed to evaluate the activation of microglia. Finally, RNA-seq was utilized to identify the predominant signaling involved in this process and in vitro studies were performed to validate them. RESULTS: A positive correlation between Aβ and a favorable prognosis was observed in glioma. Furthermore, OAβ42 suppressed glioma growth by enhancing the phagocytic activity of microglia. Insulin-like growth factor 1 (IGF-1) secreted by OAβ42-activated microglia was essential in the engulfment process. CONCLUSION: Our study proved an anti-glioma effect of Aβ, and microglia could serve as a cellular target for treating glioma with OAβ42.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。