Axons in the corticospinal tract (CST) display a limited capacity for compensatory sprouting after partial spinal injuries, potentially limiting functional recovery. Forced expression of a developmentally expressed transcription factor, Krüppel-like factor 6 (KLF6), enhances axon sprouting by adult CST neurons. Here, using a pyramidotomy model of injury in adult mice, we confirm KLF6's pro-sprouting properties in spared corticospinal tract neurons and show that this effect depends on an injury stimulus. In addition, we probed the time course of KLF6-triggered sprouting of CST axons and demonstrate a significant enhancement of growth within four weeks of treatment. Finally, we tested whether KLF6-induced sprouting was accompanied by improvements in forelimb function, either singly or when combined with intensive rehabilitation. We found that regardless of rehabilitative training, and despite robust cross-midline sprouting by corticospinal tract axons, treatment with KLF6 produced no significant improvement in forelimb function on either a modified ladder-crossing task or a pellet-retrieval task. These data clarify important details of KLF6's pro-growth properties and indicate that additional interventions or further optimization will be needed to translate this improvement in axon growth into functional gains.
Promotion of corticospinal tract growth by KLF6 requires an injury stimulus and occurs within four weeks of treatment.
KLF6 促进皮质脊髓束生长需要损伤刺激,并且会在治疗后 4 周内发生
阅读:7
作者:Kramer Audra A, Olson Greta M, Chakraborty Advaita, Blackmore Murray G
| 期刊: | Experimental Neurology | 影响因子: | 4.200 |
| 时间: | 2021 | 起止号: | 2021 May;339:113644 |
| doi: | 10.1016/j.expneurol.2021.113644 | 研究方向: | 毒理研究 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
